The logical statement $[ \sim \,( \sim \,P\, \vee \,q)\, \vee \,\left( {p\, \wedge \,r} \right)\, \wedge \,( \sim \,q\, \wedge \,r)]$ is equivalent to

  • [JEE MAIN 2019]
  • A

    $\left( {p\, \wedge \,r} \right)\, \wedge \, \sim \,q$

  • B

    $( \sim \,p\,\, \wedge  \sim \,q)\, \wedge \,r$

  • C

    $ \sim \,p\,\, \vee {\kern 1pt} \,r$

  • D

    $\left( {p\, \wedge  \sim q} \right) \wedge \,r\,$

Similar Questions

The inverse of the proposition $(p\; \wedge \sim q) \Rightarrow r$ is

Let $r \in\{p, q, \sim p, \sim q\}$ be such that the logical statement $r \vee(\sim p) \Rightarrow(p \wedge q) \vee r \quad$ is a tautology. Then ' $r$ ' is equal to

  • [JEE MAIN 2022]

The statement $(\sim( p \Leftrightarrow \sim q )) \wedge q$ is :

  • [JEE MAIN 2022]

Negation of “Ram is in Class $X$ or Rashmi is in Class $XII$” is

$(p \wedge \, \sim q)\, \wedge \,( \sim p \vee q)$ is :-