The logical statement $[ \sim \,( \sim \,P\, \vee \,q)\, \vee \,\left( {p\, \wedge \,r} \right)\, \wedge \,( \sim \,q\, \wedge \,r)]$ is equivalent to

  • [JEE MAIN 2019]
  • A

    $\left( {p\, \wedge \,r} \right)\, \wedge \, \sim \,q$

  • B

    $( \sim \,p\,\, \wedge  \sim \,q)\, \wedge \,r$

  • C

    $ \sim \,p\,\, \vee {\kern 1pt} \,r$

  • D

    $\left( {p\, \wedge  \sim q} \right) \wedge \,r\,$

Similar Questions

Let $p$ and $q$ be two statements.Then $\sim( p \wedge( p \Rightarrow \sim q ))$ is equivalent to

  • [JEE MAIN 2023]

The statement $p \to ( q \to p)$ is equivalent to

  • [JEE MAIN 2013]

Negation of $p \wedge (\sim q \vee \sim r)$ is -

The contrapositive of statement 'If Jaipur is capital of Rajasthan, then Jaipur is in India' is 

The statement $B \Rightarrow((\sim A ) \vee B )$ is equivalent to

  • [JEE MAIN 2023]